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Abstract: The uncertainty in the systems and in the measurements has to be
considered somehow to detect faults by analytical redundancy. This paper considers
them by means of interval models and interval measurements. The consistency
between them is checked and a fault is detected when there is an inconsistency. The
used technique is based on Modal Interval Analysis and saves much computational
effort compared to other techniques based on global optimization algorithms. When a
fault is detected, the same technique is used to isolate the fault. Even when the fault
is not clearly isolated, interesting information about the direction of the changes in
the system is obtained. Copyright (© 2000 IFAC
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1. INTRODUCTION

A fault is a malfunction in a system, that may
have consequences like economical losses derived
from lower efficiency of the system or danger for
the people or the environment. Many different
techniques have been developed in the recent
years which intend to detect the faults (Chen
and Patton, 1998; Frank et al., 2000). Among
these techniques, there are heuristic approaches,
which are based on rules or cognitive methods,
and analytical approaches, which are based on a
model of the system. In the latter case tools like
identification or estimation are used.

One way to detect faults is comparing the behavi-
our of the real system and a reference one. A fault
is detected when there are discrepancies between
them (Reiter, 1987):

y(t) # yr(t) (1)
y(t) —yr(t) #0
ly(t) —y,(t)] >0

where y(t) is the value of a variable of the system
at time ¢t and y,(t) is the corresponding reference
one. This is a sufficient condition, but not a
necessary one. Being the system faulty, possibly
there are time points in which the two systems
behave the same.

This reference behaviour can be obtained from
another system. This is physical redundancy. It
can also be obtained from a model of the system.
This is analytical redundancy. The results of the
fault detection are highly dependent on the model
in this case. The main problem is that these two
behaviours are never exactly the same because
the model is inaccurate, i.e. it is an approximate



representation of the system. This is the conse-
quence of the uncertainties of the system and
the procedure of systems modeling, which usually
involves hypotheses, assumptions, simplifications,
linearizations, etc.

Therefore, the uncertainty of the system has to
be considered. It can be taken into account when
the comparison between the behaviour of the real
system and the one of its model is performed. In
this case, a fault is indicated when the difference
is larger than a threshold:

ly(t) —yr(t)] > € (2)

The difficult thing then is to determine the size
of the threshold. If it is too small, faults are
indicated even when they do not exist. These are
false alarms. On the other side, if the threshold
is too large, there can be faults which are not
indicated. These are missed alarms.

Another way to take the uncertainty into account
is considering it in the modeling procedure. In-
terval models, which are introduced in section 2,
can represent the uncertainties associated to the
systems. There is also uncertainty in the measu-
rements. It can be considered by using interval
measurements, which are also described in section
2.

The reference behaviour for fault detection is ob-
tained by simulation of the interval model. This
problem of simulation is reformulated as a global
optimization problem (Tibken and Hofer, 1995).
This is a hard problem but can be softened
using error-bounded estimations and time win-
dows, which are introduced in sections 3 and 4,
respectively. This way the necessary computatio-
nal effort is much lower and the fault detection
results are even better.

Once the fault is detected, the important task is
to isolate the fault, i.e to indicate which compo-
nent is faulty. The technique that has been used
is described in section 5. Section 6 shows fault
detection and isolation results in an academic
example. Finally, section 7 summarizes this work
and provides some conclusions.

2. INTERVAL MODELS AND INTERVAL
MEASUREMENTS

An usual model consisting of functions with real-
valued parameters is precise but inaccurate as
it does not include uncertainty. Another option
is an interval model, where the values of the
parameters are intervals, which is imprecise but
may be accurate. An interval model is a set of
models indeed. For instance, assume that the
behaviour of a n-th order dynamic SISO (Single

Input, Single Output) system is represented by
the following difference equation:

m+1 p+1

ye= Y aiyrir + Y bjur_jr (3)
i=1 j=1

This equation shows that the output of the system
at any time point (y;) depends on the values of
the previous outputs (y;—;r) and inputs (u;—;1),
being T' the sampling time. This dependency is
given by the parameters of the system model (a;
and b;), which can be expressed by means of
intervals if they are uncertain.

The simulation of a real-valued model produces
a trajectory for each output variable which is a
curve representing the evolution of the variable
of the system across time: y,(t). In the case of
an interval model, as it is a set of models indeed,
a set of curves represents the evolution of each
variable: Y,.(t) = [min (y, (t)), max (y, (¢))]. This
set of curves is called envelope. Then, there is a
fault when

y(t) ¢ Yi(t) (4)

In fact, the value of the variable y(t) is not avai-
lable. If it can be measured, the measurement has
an inaccuracy due to the uncertainties associated
to the measuring procedure:

ym(t) # y(t) ()

If this inaccuracy is not considered, false alarms
can be generated. One option to take this inac-
curacy into account is including the associated
uncertainties in the model. Another option is to
use the knowledge about these uncertainties to eli-
minate the inaccuracy by introducing imprecision,
for instance using interval measurements:

Yin(t) 2 y(t) (6)

The disadvantage of the first option is that the
model becomes more imprecise and the impreci-
sion of the model is propagated across the time.
The problem of the second option is that a source
of uncertainty in the measurements is noise, which
usually has a gaussian probability distribution.
This implies that in some cases, depending on
the relation between the width of the interval
and the standard deviation of the noise, the real
value of the variable is not included in the interval
measurement:

Yin(t) 2 y(1) (7)

Using interval measurements, a fault is detected
when



Y () NY,.(t) =0 (8)

To compute the envelope is necessary to compute
the range of a function in a parameter space at
each simulation step, and range computation is a
task related to global optimization, which usually
needs an important computation effort. Moreo-
ver, if the system is considered time invariant,
the function corresponding to a simulation step
is larger than the function corresponding to the
previous one, that is, the number of parameters
increases and hence the dimensions of the para-
meter space increases too (Armengol et al., 2000).

Therefore, the simulation of interval models is a
very hard task in most of the cases because of
these two problems: the computation of the enve-
lope at one simulation step and the computation
of the envelope at every simulation step. However,
simulation is not the main goal. It is only a step in
the fault detection procedure. In the following, it
will be shown that similar results can be obtained
at a lower cost.

3. ERROR-BOUNDED ESTIMATIONS

A fault is detected when

V() NYr(t) =0 9)

It is also detected if

Yim (t) NYrer (t) =0 (10)

being Y,...(t) an external estimation of Y,.(¢), i.e.

Viea(t) 2 Yr(t) (11)

The differences between using Y., (¢) and Y,.(t)
are the following ones:

e Y., (t) usually is much easier to obtain than
Y, (t). For instance, Y., (t) = [—o0,4+00] D
Y. (t) is always true.

o V. .(t) detects less faults than Y.(¢). If
Ym(t) n Y;"(t) = @ and Ym(t) n Yrew(t) 7&
(), there is a missed alarm. For instance,
Yiex(t) = [—00,+00] does not detect faults,
so is useless.

A useful tool to obtain external estimations of
the range of a function in a parameter space is
the interval arithmetic (Moore, 1966), due to its
monotonic inclusion property. An interval func-
tion is inclusive monotonic if X C Y implies
F(X) c F(Y), being X = (X1,Xo,...,X,).
Interval arithmetic operations are inclusive mono-
tonic and so is the natural extension of a rational
function, i.e. the one obtained by substituting
each real variable by the corresponding interval

one and the rational operations by the correspon-
ding interval ones (Moore, 1979):

Ry (X) C FR(X) (12)

where Ry (X) is the range of the function f and
FR(X) is its natural extension.

Moreover, better approximations can be obtained
splitting the domain:

Ry (X) € FR(X1)UFR(X,) C FR(X) (13)

being X; U X, =X
This can be used in an iterative procedure:

1) DO Calculate external estimation Y., (t)
) IF Y;u(t) N Vieo(t) =  THEN
) Fault is detected

) ELSE

) Split parameter space

)  ENDIF

This iterative procedure calculates closer exter-
nal estimations of the range of the function at
each iteration. After infinite iterations it would
calculate the exact range, but it stops when the
estimation is sufficiently close to detect the fault,
thus saving much computational effort in case that
Y, (t) NY,.(t) = 0. However, if there is not a fault
or Yy, (£)NY,.(t) # 0, it never stops. This drawback
can be overcome by using an internal estimation
of Y,.(t):

Yoin(t) € Y (0) (14)

because if Yy, (¢) Yy, (8) # 0 then Yy, (1) NY,.(¢) #
() and consequently it is known that the fault, if
it exists, will never be detected.

Therefore, the simultaneous use of Ye.(t) and
Y,in(t) obtains the same fault detection results
that Y,.(¢) but with a much lower computation
effort. Y;....(t) and Y3, (¢) form an error-bounded
estimation of Y;.(¢) because although Y;.(¢) is not
known, it is known that

Ymn(t) g Y;“(t) g Y;“ez (t) (15)

A useful tool to compute error-bounded estimati-
ons of the range of a function in a parameter space
is Modal Interval Analysis (Gardenes et al., 1986;
Gardefies and Mielgo, 1986; SIGLA/X, 1999),
which is an extension of the interval arithmetic.
The Modal Interval Analysis allows the iterative
computation of these estimations by using efficient
branch-and-bound algorithms in which more and
larger subspaces are eliminated compared to other
techniques (Armengol et al., 2001).



4. TIME WINDOWS

In simulation, the goal is to predict the future
states of a system knowing some initial one and
the inputs to the system. Therefore, as the simu-
lation goes on, the time distance between the time
point which is being predicted and the initial one
is continuously increasing. In the case of interval
models, this means that the computing effort is
also increasing and, at some time point, the pro-
blem becomes intractable.

In fault detection, data from the system are ne-
eded to compare the real system behaviour and
the reference one obtained analytically. Therefore,
any time point can be considered as an initial one
and the prediction of the value of a variable at
a time point ¢ (Y,.(t)) can be calculated starting
from the initial time point to = 0 (Y, (t|to)) or
from any other time point 0 < t; < t (Y, (t|t;)).
So, the necessary computing effort can be limited
by fixing a maximum distance w =t — ¢;. If this
distance is given a constant value, it is said that
a sliding time window of length w is being used:
Yi(tt—w), V.t +1t+1—-w), ...

The necessary computing effort depends on the
value of w: if w is larger, this effort is larger too.
The results are also different: tighter or wider
envelopes depending on the window length, the
measurements, etc. So it can happen that Y, (¢) N
Yiex(t|t —wy) = 0 and Y, (¢) N Yier (8|t — w2) # 0,
i.e. wy detects a fault and ws does not. In this case
it can be affirmed that there is a fault because
Y () N Yyer (t) = 0 is a sufficient condition to do
so. Consequently, there is a fault if

Ym(t) N Yrew(t|t - 1) n Y;"ew(ﬂt - 2) n... (16)
N Yo (8]0) = 0

The fault detection results obtained using several
window lengths are obviously better, i.e. there are
less missed alarms, than the ones obtained using
a single window length, whatever is the length in
the latter case.

As the necessary computing effort to calculate
Yyex(tjwy) is larger than the one to calculate
Yiex (tlws) when wy > wsy, at each time point the
fault detection algorithm starts using the shortest
window length and stops when a fault is detected,
thus saving computing effort and minimizing the
rate of missed alarms. The maximum used window
length depends on the available computing power
and the complexity of the model. The basic algo-
rithm, in a more formal way, is the following one:

(1) A = Yon(2)

(2) FOR w FROM 1 TO wpes

(3)  Aw=Au_1 NV (tlt —w)
(4)  IF A, =0 THEN

(5) Fault is detected
(6) W = Wmaz

(7)  ENDIF

(8) ENDFOR

This method has been used in academic and real
examples. There are not false alarms if the interval
model represents adequately the uncertain system
and the interval measurements represent adequa-
tely the uncertain measurements, except in the
spurious case of equation 7. If in any other case
an indication of fault is known to be a false alarm,
it can be used to refine the interval model or the
interval measurements.

5. FAULT ISOLATION

Fault isolation consists in determining the exact
location of the fault. Many detection systems
have a detection task running permanently and
trigger the diagnostic task when a fault is detected
(Gertler, 1998). This diagnostic task includes very
often a set of models describing the behaviour of
the system when different faults are present and
the goal of the task is to select a model, or a set, of
models, that behaves like the faulty model does.

This technique has been applied in this work.
The detection task uses the interval model of the
system as reference. If the behaviour of the actual
system is not consistent with the behaviour of the
model, then a fault is detected and the isolation
task is triggered. The isolation task uses the same
algorithms that are used by the detection task,
but the interval models are different. In this case,
the discrepancies between the system and the
model mean that the model is not representing
the behaviour of the system so is not a model
of the present fault. The fault is clearly isolated
when only a model is consistent with the system.
If several models are consistent with the system,
then the isolation is not clear. Finally, if a fault
that has not been taken into account appears,
possibly none of the models will be consistent with
the system.

The next section shows an academic example
where a fault appears and is clearly detected and
isolated.

6. ACADEMIC EXAMPLE

Consider a system that can be modeled using a
generic first order model:

T kT
Yn = <1 — ;) Yn—1 + T’U,n_l (17)

with the following parameters, which are intervals
in some cases:
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Fig. 1. Input to the first order system.

static gain: k = [0.95, 1.05].

time constant: 7 = [10, 20] s.

initial state: yo = [0, 0].

sampling time: 7' =1 s.

input: a sequence of steps of different lengths
and heights shown in figure 1.

@

Assume that the actual system is faulty:

e static gain: £ = 1.15 (1.15 € [0.95, 1.05]).
e time constant: 7 =5 s (5 € [10, 20]).

It is considered that the measurements of the out-
put of the system have an associated uncertainty
(noise, analog to digital conversion errors, etc.).
To avoid problems of the kind of equation 7, it is
assumed that this uncertainty can be generated
adding a random number between -0.1 and 0.1 to
the exact value of the output variable:

ym(t) = y(t) +rnd([=0.1,0.1])  (18)

This uncertainty is taken into account converting
the real-valued measurements into interval mea-
surements. In this case, as the difference between
the measurements and the actual values of the
variables is known to be in the interval [-0.1, 0.1],
the interval measurements are:

Yiut) = y(t) +[-01,0.0]  (19)

The detection task using a window length w =53
obtains the error-bounded estimations of the en-
velope shown in figure 2, where Y., (t|5) is repre-
sented in solid line and Y74, (¢]5) is represented in
dashed line.

It may be observed that there are several time
points where the distance between the external
estimation and the internal one is large. The
reason is that at one of the first iterations of
the algorithm already has been seen that Yy, (t) N
Y,in(t) # 0 so it is not necessary to obtain better
(closer) estimations of Yy.e; (t) and Y74, (¢). In these
cases, the detection results are obtained with a
small computation effort.

output

0 10 20 30 40 50
time (s)

Fig. 2. FError-bounded envelopes for window
length w =5 s.

Figure 3 represents the fault detection results for
different window lengths alone. In this figure 1
means that there are discrepancies and hence a
fault has been detected, while 0 means that there
are not discrepancies so there is not fault or, if it
exists, it can not be detected, at least using these
tools. This figure shows that, although the system
is faulty during the whole time interval, it is detec-
ted only at some time points. It shows also that,
as stated in section 4, the results using different
window lengths alone are different. When different
sliding time windows are used, the result at a time
point is I if any of the windows indicates 1 and
0 if all windows indicate 0, so the use of several
sliding time windows enhance the overall results
and decreases the amount of missed alarms.

Once the fault has been detected, the isolation
task is triggered. In this case, the models that
have been introduced in the isolation task are
interval models around the nominal one in the
two-dimension space determined by the two in-
terval parameters k and 7. Table 1 represents
the results of the isolation task by indicating the
amount of detected inconsistencies in 50 s between
the interval models and the measurements using

w=5051] I || ]
w=zos ([ [ | I ] ]
werosl [ 1 || [ ,
wesso 1 1T L I ,
w=2s 1 I Inmminl

time (s)

Fig. 3. Fault detection results.



k
[0.5, 0.95] | [0.95, 1.05] | [1.05, 1.5]
2, 10] 13 2 0
7 [ 110, 20 103 99 62
20, 40 109 107 99

Table 1. Inconsistencies between the in-
terval models and the measurements.

sliding time windows of lengths 1, 2 and 5 s. As the
model of the non-faulty system (k = [0.95,1.05]
and 7 = [10,20] s) is not consistent with the
measurements, the fault is detected. In this case,
all the models of the system faults, except one,
also are not consistent with the measurement. The
exception is the isolation of the fault: the only
model that is consistent with the measurements is
k =[1.05,1.5] and 7 = [2,10] s, which is a correct
isolation of the fault because the faulty system is
k=1.15and 7 =5 s: 1.15 C [1.05, 1.5] and 5 C
[2, 10]).

The table also shows the direction of the change in
the value of the parameters: the values of both &
and 7 have decreased. This is a useful information
to refine the isolation in case it is not clear or the
fault consists in a drift in some parameter, for
instance.

7. CONCLUSIONS

A method for fault detection and isolation for
systems with parametric uncertainties is presen-
ted. The uncertainty of the systems is represented
using interval models and the uncertainty associ-
ated to the measurements is also represented by
means of intervals. The consistency between the
model and the interval measurements is checked
using a branch-and-bound algorithm based on
Modal Interval Analysis, which increases its ef-
ficiency. A fault is detected when there is any
inconsistency in any time window. A false alarm
indicates that either the interval model of the
system or the interval measurements do not repre-
sent adequately the corresponding uncertainties.
If the representation is adequate, there are not
false alarms except in some spurious cases.

Once the fault is detected, the same method is
used to isolate the fault by using interval models of
the system with different faults. The fault is isola-
ted when one, or more than one, of these models is
consistent with the measurements. If the isolation
is not clear, the amount of discrepancies between
each of these models and the measurements indi-
cates the direction of the changes, which is also a
useful information.
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